
Journal of Geometry and Physics 55 (2005) 267–290

Twisted quiver bundles over almost
complex manifolds

Xi Zhanga,b,∗
a Department of Mathematics, Zhejiang University, Hangzhou 310027, Zhejiang, PR China

b Mathematics Section, Abdus Salam International Centre for Theoretic Physics,
Strada Costiera, 11, 34014 Trieste, Italy

Received 31 July 2004; received in revised form 25 October 2004; accepted 18 December 2004
Available online 21 January 2005

Abstract

In this paper, we study twisted quiver bundle over general almost complex manifolds. A twisted
quiver bundle is a set ofJ-holomorphic vector bundles over an almost complex manifold, labelled by
the vertices of a quiver, linked by a set of morphisms twisted by a fixed collection ofJ-holomorphic
vector bundles, labelled by the arrows. We prove a Hitchin–Kobayashi correspondence for twisted
quiver bundles over a compact almost Hermitian regularized manifold, relating the existence of so-
lutions to certain gauge equations to an appropriate notion of stability for the corresponding quivers.
This result can be seen as a generalization of that in[2,9].
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1. Introduction

LetMbe a compact K̈ahler manifold and letEbe a holomorphic vector bundle overM. The
classical Hitchin–Kobayashi correspondence[10,11,16,19,21,22]states that a holomorphic
vector bundle is stable if and only if it is simple (i.e. it admits no non-trivial trace free
infinitesimal automorphisms) and admits a Hermitian–Einstein metric.

The Hitchin–Kobayashi correspondence has several interesting and important general-
izations and extensions. Quiver bundles, twisted quiver bundles over Kähler manifolds were
studied by Alvare-Consul and Garcia-Prada[2,3]. A quiverQconsists of a setQ0 of vertices
v, v′, . . ., and a setQ1 of arrowsa : v→ v′ connecting the vertices. Given a quiverQand a
compact K̈ahler manifoldM, aquiver bundleis defined by assigning a holomorphic vector
bundleEv to a finite number of vertices and a homomorphismφa : Ev → Ev′ to a finite
number of arrows. Aquiver sheafis defined by replacing the term “holomorphic vector bun-
dle” by “coherent sheaf” in the above definition. If we fix a collection of holomorphic vector
bundlesẼa parametrized by the set of arrows, and the morphisms areφa : Ev ⊗ Ẽa → Ev′ ,
twisted by the corresponding bundles, we have atwisted quiver bundleor a twisted quiver
sheaf. In [2] Alvare-Consul and Garcia-Prada defined natural gauge-theoretic equations,
quiver vortex equations, for a collection of Hermitian metrics on the bundles associated to
the vertices of a twisted quiver bundle. To solve these equations, they introduced a stability
criterion for twisted quiver sheaves, and proved a Hitchin–Kobayashi correspondence, relat-
ing the existence of Hermitian metrics satisfying the quiver vortex equations to the stability
bundle. The above result generalized many known results for bundles with extra structure.
For examples:Higgs bundles[14,20],holomorphic pair[6,7],holomorphic triple, holomor-
phic chain[1,8,12]. It should be pointed out Alvare-Consul and Garcia-Prada’s results[2,3]
cannot be derived from the general Hitchin–Kobayashi correspondence scheme developed
by Banfield[5] and further generalized by Mundet i Riera[18]. This is due not only to the
presence of twisting vector bundles, but also to the deformation of the Hermitian–Einstein
terms in the equations.

In [9], de Bartolomeis and Tian investigated the stability of complex vector bundles
over almost complex manifolds, they introduced the concept of bundle almost complex
structure (bacs)J on principal bundle, definedJ-stable complex vector bundles, and
proved the existence of Hermitian–Einstein metrics onJ-stable complex vector bundles
over a compact almost Hermitian regularized manifold. Inspired by this, we want to
discuss twisted quiver bundles over more general almost Hermitian manifolds. In Sec-
tions 2 and 3, similar as the appropriate notions of stability and gauge theoretic equa-
tions for twisted quiver bundles were defined by Alvare-Consul and Garcia-Prada[2], we
will give the definitions ofJ-holomorphic twisted quiver bundles, thequiver (σ, τ)-vortex
equationsover almost Hermitian manifolds, the (σ, τ)-degree and the (σ, τ)-stability of J-
holomorphic twisted quiver bundle, whereσ and τ are collections of real numbersσv,
τv, with σv positive for eachv ∈ Q0. Our main result is the following Hitchin–Kobayashi
correspondence.

Main theorem. Let R = (E, Ẽ,Q, J, φ) be a J-holomorphic twisted quiver bundles on a
compact almost Hermitian regularized manifold(M,η) (i.e.,whose K¨ahler formη satisfies
∂∂̄ηm−1 = 0). Let σ andτ be collections of real numbersσv, τv, with σv positive for each



X. Zhang / Journal of Geometry and Physics 55 (2005) 267–290 269

v ∈ Q0, such thatdegσ,τ(R) = 0. Then R is(σ, τ)-polystable if and only if it admits a
Hermitian metricH satisfying the quiver(σ, τ)-vortex Eqs.(2.7).

The above theorem combines the results of de Bartolomeis and Tian[9] with the results
of Alvare-Consul and Garcia-Prada[2]. By taking over many definitions and results from
Alvarez-Consul and Garcia-Prada’s[2], de Bartolomeis and Tian[9], we can use the heat
flow method to prove the main theorem. In Kähler case, our proof can also be seen as
another proof of the Hitchin–Kobayashi correspondence of Alvarez-Consul and Garcia-
Prada in[2]. Recently, L̈ubke and Teleman[23] proved a very general Hitchin–Kobayashi
correspondence on arbitrary compact Hermitian manifolds, but their result has no overlap
with our theorem, since their result does not include the almost Hermitian case (i.e. in
which the integrability condition on the almost complex structure is relaxed). The paper
is organized as follows: in Section2, we give some basic definitions, in Section3, we
give some estimates and preliminaries which will be used in the proof of main theorem; in
Section4, we introduce the definition of (σ, τ)-stability, and prove that (σ, τ)-stability is a
necessary condition for the existence of Hermitian metrics satisfying quiver (σ, τ)-vortex
equations (2.7); in Section5, we give the proof of our main theorem.

2. Notations

In this section, we will recall some definitions in[2,9]. Let (M,JM) be anm-dimensional
almost complex manifold. A complex vector bundle (E, Ĵ) of (complex) rankr overM is a
real vector bundleE of rank 2r equipped with a section̂J of End(E) such that̂J2 = −IdE.
We denote the principal GL(r, C)-bundle of complex linear frames onE by C(E), thusE
can also be seen as an associate bundle ofC(E) with standard fibreCr. Firstly, we recall
the notion of bundle almost complex structure (bacs) which has been investigated by de
Bartolomeis and Tian in[9].

Definition 2.1. A bundle almost complex structure (bacs) onC(E) is an almost com-
plex structureJ on C(E) such that: (1), the bundle projectionπ : C(E) → M is (J, JM)-
holomorphic; (2),J induces the standard integrable almost complex structureJS on the
fibres; (3), GL(r, C) actsJ-holomorphically onC(E).

LetB(C(E)) be the set of bacs onC(E), andĤ(E) be the set of linear differential operators
∂̄E : ∧p,q(E) → ∧p,q+1(E), satisfying the followinḡ∂-Leibnitz rule:

∂̄Efα = ∂̄Mf ∧ α+ f ∂̄Eα, (2.1)

for everyf ∈ C∞(M), α ∈ ∧p,q(E).

Proposition 2.2 (de Bartolomeis and Tian[9]).The set B(C(E)) is in one-to-one correspon-
dence with the set̂H(E).

From the above proposition, we can see that If a bacsJ is assigned onC(E), one can
define a linear differential operator̄∂E ∈ Ĥ(E) in natural way. The following definitions
are taken from[9].
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Definition 2.3. Let J ∈ B(C(E)). Then a sectione of E is said to beJ-holomorphic if it
satisfies̄∂Je = 0, where the differential operator̄∂E is in correspondence withJ.

Definition 2.4. Assume bacs’s have been assigned onC(E2) andC(E1); a bundle morphism
φ : E2 → E1 is said to beJ-holomorphic if∂̄E∗

2⊗E1φ = 0.

Definition 2.5. Let J ∈ B(C(E)). Then a complex sub-bundleE′ ⊂ E is said to be aJ-
holomorphic subbundle if̄∂E maps∧p,q(E′) into ∧p,q+1(E′).

Definition 2.6. Let J ∈ B(C(E)). A connection will be called type (1, 0), if its connection
1-forms onC(E) satisfies:ω ∈ T 1,0(C(E), gl(r, C), ad).

Let C1,0
J (C(E)) be the set of all connection 1-forms inC(E) which are of type(1, 0)

with respect toJ. Given anω ∈ C1,0
J (C(E)), it is easy to check thatDω : T 0(C(E)) →

T 1(C(E)) splits asDω = ∂ω + ∂̄J , also we have the splitting∇ = ∂∇ + ∂̄E of the induced
exterior covariant differential operator; and the (1, 1) part of curvature form isF1,1

ω = ∂̄Jω
[9, Propositions 1.8 and 1.9].

Assume a Hermitian metricH is assigned onEand letUH (E) be the principalU(r)-bundle
of H-unitary frames onE, we have the following result.

Proposition 2.7 (de Bartolomeis and Tian[9, Proposition 2.1]).There exists a unique
connection onUH (E) such that its connection1-form,when extended to a connection form
onC(E) is of type(1, 0)with respect toJ ∈ B(C(E)); this connection is called the canonical
Hermitian connection.

Let Ĥ : C(E) → GL(r, C) be defined as following: Ifu = {e1, . . . , er, Ĵe1, . . . , Ĵer},
thenĤ(u) = (H(ej, ek) − iH(ej, Ĵek))1≤j,k≤r. Set

ωH = Ĥ−1∂J Ĥ, (2.2)

it is just the canonical Hermitian connection 1-form correspondence with the metric structure
H. LetK be another Hermitian structure onE and letk = K−1H , it is easy to check that:

ωH = ωK + k−1∂ωKk, (2.3)

F1,1
ωH

= F1,1
ωK

+ ∂̄E(k−1∂ωKk). (2.4)

We now suppose that the almost complex manifoldM has a fixed Hermitian metric, with
Kähler formη. The natural operatorΛ : Ω1,1

M → Ω0
M is the contraction withη. Choose a

local real normal coordinate (x1, . . . , x2m) centered at the considered pointp0. Let

JM

(
∂

∂xα

)
= Jβα

∂

∂xβ
, α, β = 1, . . . ,2m.

By calculating directly, we have

−√−1Λ∂̄∂f = 1

2
.f + 1

2

∑
Jβα
∂J
γ
β

∂xα

∂f

∂xγ
(2.5)
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at the considered pointp0. Let.̃ = −2
√−1Λ∂̄∂, andV = JM(gαβ(∇∂/∂xβJM)( ∂

∂xα
)), where

(gαβ) is the inverse matrix of the metric matrix in local coordinates. From the above equality,
we have

.̃f = .f + 〈V,∇f 〉, (2.6)

for any f ∈ C2(M). In the Kähler case, by the Kodaira identities, we know that
.̃ = ..

Definition 2.8 (Auslander et al.[4]). A quiver is a pair of setsQ = (Q0,Q1) together with
two mapsh, t : Q1 → Q0. The elements ofQ0 (resp.Q1) are called the vertices (resp.
arrows) of the quiver. For each arrowa ∈ Q1, the vertexta (resp.ha) is called the tail (resp.
head) of the arrowa. The arrowa is sometimes represented bya : v→ v′ whenv = ta and
v′ = ha.

Throughout this paper,Q is a quiver, and̃E is a collection of finite rank complex vector
bundlesẼa onM, for each arrowa ∈ Q1. We assign one fixed bacsJa on each principal
bundlesC(Ẽa). The following definitions are taken over from Alvare-Consul and Garcia-
Prada[2].

Definition 2.9 (J-holomorphic twisted quiver bundle). AJ-holomorphic twisted quiver
bundle on almost complex manifold (M,JM) is a tripleR = (E, J, φ), whereE is a collection
of complex vector bundlesEv of rankrv onM, J is a collection of bacsJv onC(Ev), for each
v ∈ Q0, andφ is a collection of morphismsφa : Eta ⊗ Ẽa → Eha, for eacha ∈ Q1, such
thatEv = 0 for all but finitely manyv ∈ Q0, andφa = 0 for all but finitely manya ∈ Q1.

Throughout this paper,̃H is a collection of Hermitian metrics̃Ha on Ẽa, for eacha ∈
Q1, which we fix once and all. AHermitian metricH on J-holomorphic twisted quiver
bundleR = (E, J, φ) is a collection of Hermitian metricsHv onEv, for eachv ∈ Q0 with
Ev �= 0. To define the gauge equations onR, we note thatφa : Eta ⊗ Ẽa → Eha has a
smooth adjoint morphismφ∗Ha

a : Eha → Eta ⊗ Ẽa with respect to the Hermitian metrics
Hta ⊗ H̃a onEta ⊗ Ẽa, andHha onEha, for eacha ∈ Q1, so it make sense to consider the
compositionφa ◦ φ∗Ha

a : Eha → Eha. Moreover,φa andφ∗Ha
a can be seen as morphisms

φa : Eta → Eha ⊗ Ẽ∗
a andφ∗Ha

a : Eha ⊗ Ẽ∗
a → Eta, soφ∗Ha

a ◦ φa : Eta → Eta make sense
too.

Definition 2.10. (Quiver vortex equations) Letσ andτ be collections of real numbersσv,
τv, with σv positive, for eachv ∈ Q0. A Hermitian metricH onRsatisfies thetwisted quiver
(σ, τ)-vortex equationsif

σv
√−1ΛF1,1

Hv
+

∑
a∈h−1(v)

φa ◦ φ∗Ha
a −

∑
a∈t−1(v)

φ∗Ha
a ◦ φa = τv IdEv, (2.7)

for eachv ∈ Q0 such thatEv �= 0, whereF1,1
Hv

is the (1, 1) part of the curvature of the
canonical Hermitian connection correspondence with the metricHv on the complex vector
bundleEv.
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Let R = (E, φ) be a twisted quiver bundle onm-dimensional almost Hermitian mani-
fold (M,η), H = {Hv}v∈Q0, H̃ = {H̃a}a∈Q1 are Hermitian metrics on quiver bundleRand
twisting bundles̃E, respectively.Av (Aa) denotes the set of connections, that are compatible
with Hv (Ha), onEv (Ẽa). We fix a connectioñAa ∈ Aa on Ẽa for eacha ∈ Q1. Then we
consider the following generalized Yang–Mills–Higgs functional.

Definition 2.11. The generalized Yang–Mills–Higgs functional YMHσ,τ : A ×Ω0 → R

by

YMHσ,τ(A, φ) =
∑
v

σv‖FAv‖2
L2 +

∑
a

‖DAaφa‖2
L2 + 2

∑
v

σ−1
v

×
∥∥∥∥∥∥
∑

a∈h−1(v)

φa ◦ φ∗H
a −

∑
a∈t−1(v)

φ∗H
a ◦ φa − τvIdEv

∥∥∥∥∥∥
2

L2

, (2.8)

whereA = ×vAv,Aa is the connection induced byAta, Ãa andAha,L2 denotes theL2-norm
in the appropriate space of sections.

We have the following decomposition result for the above Yang–Mills–Higgs functional.

Proposition 2.12.Suppose that the K¨ahler formη satisfiesdηn−1 = 0, then

YMHσ,τ(A, φ) = 4
∑
v

σv‖F0,2
Av

‖2
L2 + 4

∑
a

‖∂̄Aaφa‖2
L2 − ‖φ‖R,Ẽ

+
∑
v

σ−1
v

∥∥∥∥∥∥σv
√−1ΛF1,1

Av
+

∑
a∈h−1(v)

φa ◦ φ∗
a

−
∑

a∈t−1(v)

φ∗H
a ◦ φa − τv IdEv

∥∥∥∥∥∥
2

L2

+
∑
v

τv

∫
M

√−1 Tr(FAv ) ∧ η[m−1]

+
∑
v

σv

∫
M

Tr(FAv ∧ FAv ) ∧ η[m−2]. (2.9)

Hereη[m] = ηm

(m)! ,F
0,2
A is the component ofFA of type(0,2),and‖φ‖R,Ẽ =∑a

∫
M

Tr(φa ◦
(IdEta ⊗ √−1ΛF1,1

Ãa
) ◦ φ∗H

a ).

Proof. First, note that[9, Proposition 3.1]

|FAv |2 = |F1,1
Av

|2 + 2|F0,2
Av

|2, (2.10)

|F1,1
Av

|2η[m] = Tr(FAv ∧ FAv ) ∧ η[m−1] + (2|F0,2
Av

|2 + |λF1,1
Av

|2)η[m] . (2.11)
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Secondly, we notice that the 1, 1 part of the curvature ofAa is given byF1,1
Aa

= ∂Aa ∂̄Aa +
∂̄Aa∂Aa . So, we have

F
1,1
Aa

(φa) = F1,1
Aha

◦ φa − φa ◦ (F1,1
Ata

⊗ IdẼa + IdEta ⊗ F1,1
Ãa

). (2.12)

By the condition dηm−1 = 0, one can show that∫
M

(
√−1ΛF1,1

Aa
φa, φa)η

m = ‖∂Aaφa‖2
L2 − ‖∂̄Aaφa‖2

L2. (2.13)

Using the above equalities, and discussing like that in[2, Proposition 4.1], we have the
formula(2.9). �

If M is an almost K̈ahler manifold (i.e. dη = 0), the last two terms in(2.9)do not depend
on the connectionA. By Chern–Weil theorem, we known that they are determined by the
first Chern class and second Chern character ofE, respectively. An immediate corollary is
the following.

Corollary 2.13. When M is an almost K¨ahler manifold, the functionalYMHσ,η is bounded
below by

2π
∑
v

τvC1(Ev) − 8π2
∑
v

σv Ch2(Ev) − ‖φ‖R,Ẽ,

and this lower bounded is attained at (A, φ) ∈ A ×Ω0 if and only if

F
0,2
Aa

= 0, ∂̄Aaφa = 0,

σv
√−1ΛF1,1

Av
= −

∑
a∈h−1(v)

φa ◦ φ∗
a +

∑
a∈t−1(v)

φ∗H
a ◦ φa + τv IdEv, (2.14)

for everyv ∈ Q0, a ∈ Q1.

3. Some preliminaries on quiver vortex equations

Given aJ-holomorphic twisted quiver bundleR = (E, J, φ) on almost Hermitian man-
ifold (M,JM, η). By the definition, we can assume thatQ = (Q0,Q1) is a finite quiver,
with Ev �= 0 for v ∈ Q0, andφa �= 0 for a ∈ Q1. Unless otherwise stated,v, v′, . . . (resp.
a, a′, . . .) stand for elements ofQ0 (resp.Q1), while sums, direct sums and products in
v, v′, . . . (resp.a, a′, . . .) are over elements ofQ0 (resp.Q1). The main purpose of this
paper is to find a Hermitian metricH satisfying thetwisted quiver(σ, τ)-vortex equations
(2.7). Let K be the initial Hermitian metric onR. Consider a family Hermitian metrics
H(t) onRwith initial metricH(0) = K . And denotek(t) be collections of endomorphisms
kv(t) = K−1

v Hv(t) on bundleEv, for v ∈ Q0 with Ev �= 0. When there is no confusion, we
will omit the parametert and simply writeH, k for H(t), k(t). We consider the following
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heat equations of(2.7)

H−1
v

∂Hv

∂t
= − 2

σv
θv, (3.1)

for eachv ∈ Q0. Where

θv(H) = σv
√−1ΛF1,1

Hv
+

∑
a∈h−1(v)

φa ◦ φ∗Ha
a −

∑
a∈t−1(v)

φ∗Ha
a ◦ φa − τv IdEv. (3.1′)

It is completely equivalent to the following evolution equations

∂kv

∂t
= −2

√−1Λ∂̄Ev∂Kvkv + 2
√−1Λ(∂̄Evkvk

−1
v ∂Kvkv) − 2

√−1kvΛF
1,1
Kv

+ 2τv
σv
kv

− 2

σv




∑
a∈h−1(v)

kv ◦ φv ◦ k−1
ta ⊗ IdẼa ◦ φ∗Ka

a ◦ kv

−
∑

a∈t−1(v)

φ∗Ka
a ◦ kha ⊗ IdẼ∗

a
◦ φa


 , (3.2)

for eachv ∈ Q0. Where we have used the formula(2.4)and the identities

φ∗Ha
a = k−1

ta ⊗ IdẼa ◦ φ∗Ka
a ◦ kha; or φ∗Ha

a = k−1
ta ◦ φ∗Ka

a ◦ kha ⊗ IdẼ∗
a
. (3.3)

We know that the above equations are a nonlinear parabolic system, as in[10], kv(t) are
self-adjoint with respect toHi for t > 0 sincekv(0) = IdEv .

Proposition 3.1. LetH(t) be a solution of the heat flow(3.1), then(
.̃− ∂

∂t

)
Θ2 ≥ 0, (3.4)

and (
.̃− ∂

∂t

)∑
v

Tr θv = 0, (3.5)

whereθv = θv(H) is defined in formula(3.1′) andΘ2 =∑v
1
σv

|θv|2Hv .

Proof. By calculating directly, we have

∂

∂t
θv = σv

√−1Λ∂̄Ev

(
∂Hv

(
H−1
v

∂Hv

∂t

))

−
∑

a∈h−1(v)

(
φa ◦H−1

ta

∂Hta

∂t
⊗ IdẼa ◦ φ∗Ha

a − φa ◦ φ∗Ha
a ◦H−1

v

∂Hv

∂t

)

+
∑

a∈t−1(v)

(
H−1
v

∂Hv

∂t
φ∗Ha
a ◦ φa − φ∗Ha

a ◦H−1
ha

∂Hha

∂t
⊗ IdẼ∗

a
◦ φa

)
, (3.6)
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and

.̃|θv|2Hv = 2Re〈−2
√−1Λ∂̄Ev∂Hvθv, θv〉Hv + 〈[2√−1ΛF1,1

Hv
, θv], θv〉Hv

+ 2|∂Hvθv|2Hv + 2|∂̄Evθv|2Hv. (3.7)

Using the above formulas, we have(
.̃− ∂

∂t

)
Θ2

=
∑
v

2

σv
|∇Hvθv|2Hv

+ 2
∑
a

{∣∣∣∣φ∗Ha
a

θha

σha

∣∣∣∣
2

H

+
∣∣∣∣ θtaσta φ∗Ha

a

∣∣∣∣
2

H

− 2<φa ◦ θta
σta

⊗ IdẼa ◦ φ∗Ha
a ,

θha

σha
>H

}

+ 2
∑
a

{∣∣∣∣φa θtaσta
∣∣∣∣
2

H

+
∣∣∣∣ θhaσha φa

∣∣∣∣
2

H

− 2< φ∗Ha
a ◦ θha

σha
⊗ IdẼ∗

a
◦ φa, θta

σta
>H

}

≥
∑
v

2

σv
|∇Hvθv|2Hv ≥ 0. (3.8)

The formula(3.5)can be deduce from(3.6)directly. �

Next, we recall the Donaldson’s “distance” on the space of Hermitian metrics as follows.

Definition 3.2. For any two Hermitian metricsH, K on a vector bundleE set

σ(H,K) = TrH−1K + TrK−1H − 2 rankE. (3.9)

It is obvious thatσ(H,K) ≥ 0 with equality if and only ifH = K. The functionσ is not
quite a metric but it serves almost equally well in our problem. In particular, a sequence of
metricsHt converges toH in the usualC0 topology if and only if SupMσ(Ht,H) −→ 0.

LetH = {Hv}v∈Q0 andK = {Kv}v∈Q0 are two Hermitian metrics on theJ-holomorphic
twisted quiver bundleR = (E, J, φ). We define the Donaldson’s distance of two metrics on
quiver bundle as the following:

σ(H,K ) =
∑
v

σvσ(Hv,Kv). (3.10)

Denotingk = {kv}v∈Q0, wherekv = K−1
v Hv; applying−√−1Λ to (2.4) and taking the

trace in the bundleEv, we have

Tr(
√−1kv(ΛF

1,1
Hv

−ΛF1,1
Kv

)) = −1
2.̃Tr kv + Tr(−√−1Λ∂̄Evkvk

−1
v ∂Kvkv). (3.11)

Let H(t), K (t) are two families of Hermitian metrics on the quiver bundleR. Using the
above formula, we have
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(
.̃− ∂

∂t

)(∑
v

σv Tr kv(t)

)

= 2
∑
v

σv Tr(−√−1Λ∂̄Evkvk
−1
v ∂Kvkv) +

∑
v

Tr

(
kv

(
σvK

−1
v

∂Kv

∂t
+ 2θv(K)

))

−
∑
v

Tr

(
kv

(
σvH

−1
v

∂Hv

∂t
+ 2θv(H)

))

+ 2
∑
a

Tr{φ∗Ka
a ◦ φa ◦ kta + kha ◦ φa ◦ k−1

ta ⊗ IdẼa ◦ φ∗Ka
a ◦ kha

−φ∗Ka
a ◦ kha ⊗ IdẼ∗

a
◦ φa − φa ◦ φ∗Ka

a ◦ kha}, (3.12)

and (
.̃− ∂

∂t

)(∑
v

σv Tr k−1
v (t)

)

= 2
∑
v

σv Tr(−√−1Λ∂̄Evk
−1
v kv∂Kvk

−1
v )

+
∑
v

Tr

(
k−1
v

(
σvH

−1
v

∂Hv

∂t
+ 2θv(H)

))

−
∑
v

Tr

(
k−1
v

(
σvK

−1
v

∂Kv

∂t
+ 2θv(K)

))

+ 2
∑
a

Tr{φ∗Ha
a ◦ φa ◦ k−1

ta + k−1
ha ◦ φa ◦ kta ⊗ IdẼa ◦ φ∗Ha

a ◦ k−1
ha

−φ∗Ha
a ◦ k−1

ha ⊗ IdẼ∗
a
◦ φa − φa ◦ φ∗Ha

a ◦ k−1
ha }, (3.13)

On the other hand, from the positivity ofkv, it is not hard to check that

Tr{φ∗Ka
a ◦ φa ◦ kta + kha ◦ φa ◦ k−1

ta ⊗ IdẼa ◦ φ∗Ka
a ◦ kha

−φ∗Ka
a ◦ kha ⊗ IdẼ∗

a
◦ φa − φa ◦ φ∗Ka

a ◦ kha} ≥ 0, (3.14)

and

Tr{φ∗Ha
a ◦ φa ◦ k−1

ta + k−1
ha ◦ φa ◦ kta ⊗ IdẼa ◦ φ∗Ha

a ◦ k−1
ha

−φ∗Ha
a ◦ k−1

ha ⊗ IdẼ∗
a
◦ φa − φa ◦ φ∗Ha

a ◦ k−1
ha } ≥ 0. (3.15)

Using the above formula and the facts[10,21]

Tr(−√−1Λ∂̄Evkvk
−1
v ∂Kvkv) ≥ 0, Tr(−√−1Λ∂̄Evk

−1
v kv∂Hvk

−1
v ) ≥ 0, (3.16)

we have prove the following proposition.
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Proposition 3.3. Let twon+ 1-tuplesH(t), K (t) are two solutions of the Heat flow(3.1)
then (

.̃− ∂

∂t

)
σ(H(t),K (t)) ≥ 0. (3.17)

Corollary 3.4. LetH andK are two Hermitian metrics satisfying the quiver(σ, τ)-vortex
Eq. (2.7), then:

.̃σ(H,K ) ≥ 0. (3.18)

Proposition 3.5.LetH(x, t) andK (x, t) are two families of Hermitianmetrics on the quiver
bundle R, then(

.̃− ∂

∂t

)
lg

{∑
v

σv(Tr(K−1
v Hv) + Tr(H−1

v Kv))

}

≥ −
∑
v

(∣∣∣∣H−1
v

∂Hv

∂t
+ 2

σv
θv(H)

∣∣∣∣
Hv

+
∣∣∣∣K−1
v

∂Kv

∂t
+ 2

σv
θv(K)

∣∣∣∣
Kv

)
. (3.19)

Proof. Let kv = K−1
v Hv, and denote thatA =∑v σv(Tr kv + Tr k−1

v ). From formula
(3.12), (3.13), we have(

.̃− ∂

∂t

)
lg{A}

= A−1
(
.̃− ∂

∂t

)
{A} − A−2|∇A|2

= A−1

{∑
v

Tr(kv − k−1
v )

[(
σvK

−1
v

∂Kv

∂t
+ 2θv(K)

)

−
(
σvH

−1
v

∂Hv

∂t
+ 2θv(H)

)]}

+A−1

{∑
v

σvTr(−2
√−1Λ∂̄Evkvk

−1
v ∂Kvkv − 2

√−1Λ∂̄Evk
−1
v kv∂Hvk

−1
v )

}

−A−2|∇A|2 + 2A−1
∑
a

Tr{φ∗Ka
a ◦ φa ◦ kta

+ kha ◦ φa ◦ k−1
ta ⊗ IdẼa ◦ φ∗Ka

a ◦ kha − φ∗Ka
a ◦ kha ⊗ IdẼ∗

a
◦ φa

−φa ◦ φ∗Ka
a ◦ kha} + 2A−1

∑
a

Tr{φ∗Ha
a ◦ φa ◦ k−1

ta + k−1
ha ◦ φa ◦ kta

⊗ IdẼa ◦ φ∗Ha
a ◦ k−1

ha − φ∗Ha
a ◦ k−1

ha ⊗ IdẼ∗
a
◦ φa − φa ◦ φ∗Ha

a ◦ k−1
ha }, (3.20)
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Direct calculation shows that[21]

2(Tr kv)
−1 Tr(−√−1Λ∂̄Evkvk

−1
v ∂Kvkv) − (Tr kv)

−2|∇ Tr kv|2 ≥ 0,

2(Tr k−1
v )−1 Tr(−√−1Λ∂̄Evk

−1
v kv∂Hvk

−1
v ) − (Tr k−1

v )−2|∇ Tr k−1
v |2 ≥ 0. (3.21)

From the above inequalities, it is easy to check

A

{∑
v

σv Tr(−2
√−1Λ∂̄Evkvk

−1
v ∂Kvkv − 2

√−1Λ∂̄Evk
−1
v kv∂Hvk

−1
v )

}

≥
∣∣∣∣∣
∑
v

σv(∇ Tr kv + ∇ Tr k−1
v )

∣∣∣∣∣
2

. (3.22)

By formula(3.14), (3.15), and (3.22), we have proved(3.19). �

Corollary 3.6. LetH(t) be a solution of the heat flow(3.1)with initial metricK , then(
.̃− ∂

∂t

)
lg

{∑
v

σv(Tr(K−1
v Hv) + Tr(H−1

v Kv))

}
≥ −

∑
v

∣∣∣∣ 2

σv
θv(K)

∣∣∣∣
Kv

. (3.23)

Corollary 3.7. LetH andK are two Hermitian metrics on the quiver bundle R, then

.̃ lg

{∑
v

σv(Tr(K−1
v Hv) + Tr(H−1

v Kv))

}

≥ −
∑
v

(∣∣∣∣ 2

σv
θv(H)

∣∣∣∣
Hv

+
∣∣∣∣ 2

σv
θv(K)

∣∣∣∣
Kv

)
. (3.24)

At the end of this section, we use the Moser-iteration to deduce the following mean-value
inequality which will be used in the proof of main theorem. The major geometric-analytic
property ofM which we are going to use is the Sobolev inequality on the geodesic ballBR.
Namely, for anyψ ∈ C∞

0 (B(R)), there exists a constantCs only dependent on the geometry
ofM aroundB(R) such that

Cs

(∫
B(R)

ψ4m/(2m−2)
)(2m−2)/2m

≤
∫
B(R)

|∇ψ|2. (3.25)

Theorem 3.8.Suppose that nonnegative function f satisfies

.̃f ≥ −B1f, (3.26)

whereB1 is a positive constant. Letp > 0, then there exist constantB2 depending only on
B1, p and M such that

sup
B(R/2)

f ≤ B2

(∫
B(R)

fp
)1/p

. (3.27)



X. Zhang / Journal of Geometry and Physics 55 (2005) 267–290 279

Proof. Setting 0< r2 < r1 ≤ R, and letϕ be the cut-off function

ϕ(x) =
{

1; x ∈ B(r2),

0; x ∈ B(R) \ B(r1),
(3.28)

0 ≤ ϕ(x) ≤ 1 and|∇ϕ| ≤ 2(r1 − r2)−1.
Let q ≥ p > 1. Multiplying with fq−1ϕ2 on both side of(3.26)and integrating by parts

we have

(q− 1)
∫
B(R)

fq−2ϕ2|∇f |2

≤ −2
∫
B(R)

〈∇ϕ,∇f 〉fq−1ϕ +
∫
B(R)

〈V,∇f 〉fq−1ϕ2 + B1

∫
B(R)

fqϕ2. (3.29)

Using Schwartz inequality and Young inequality, we have∫
B(R)

|∇(fq/2ϕ)|2 ≤ q

q− 2

∫
B(R)

(|V |2 + B1)fqϕ2 +
∫
B(R)

fq|∇ϕ|2. (3.30)

Applying the Sobolev inequality(3.25)to fq/2ϕ, we get(∫
Br2

fq(2m/(2m−2))

)(2m−2)/2m

≤ C(M,p,B1, |V |)(1 + (r1 − r2)−2)
∫
B(r1)

fq.

(3.31)

Then, by the standard Moser-iteration argument we deduce(3.27)for p > 2. On the other
hand a general argument in[17] shows thatp > 0 case follows fromp > 2. �

Corollary 3.9. If nonnegative function f satisfies

.̃f ≥ −B3, (3.32)

then there exists positive constantsB4, B5 depending only on M andB3 such that

‖f‖∞ ≤ B4(‖f‖1 + B5). (3.33)

Proof. Let f ′ = f + B3, then we havẽ.f ′ ≥ −f ′. Applying the mean value inequality
(3.27)to f ′, we can easily conclude the inequality(3.33). �

4. Stability of J-holomorphic twisted quiver bundle

Let (M,JM, η) be a compactm-dimensional almost Hermitian manifold whose Kähler
form η satisfies∂M∂̄Mηm−1 = 0, and letR = (E, J, φ) be aJ-holomorphic twisted quiver
bundle overM, andẼ = {Ẽa}a∈Q1 are the twisting bundles. LetHv be a Hermitian metric
on the bundleEv, then the degree ofEv is defined as follows:

deg(Ev) =
√−1

Vol(M,η)

∫
M

(TrΛF1,1
Hv

)η[m], (4.1)
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whereη[m] = 1
m! η

m. From the condition on the K̈ahler form, we known that the above defini-
tion is independent of Hermitian metrics on theEv. LetE′

v ⊂ Ev be a complex subbundle,
using the Hermitian–Codazzi–Mainardi equation, we have the following proposition[9,
Proposition 2.4]:

Proposition 4.1. Let (Ev, Ĵv,Hv) be a Hermitian bundle with a fixedbacsJv, letE′
v ⊂ Ev

be a complex sub-bundle. Then the following facts are equivalent:

(1) E′
v is aJv-holomorphic sub-bundle;

(2) the orthogonal projectionπv : Ev −→ E′
v satisfies

(Id − πv) ◦ ∂̄E∗
v⊗Evπv = 0. (4.2)

For further consideration, let us introduce the following class of objectsF(Ev, Jv) [9]:
E′
v ∈ F(Ev, Jv) if and only if

(1) there exists a closed subsetΣv ⊂ M with H2m−4(Σv) < +∞, such thatE′
v|M\Σv is a

Jv-holomorphic sub-bundle ofEv|M\Σv ;
(2) for anyx ∈ Σv, and any localJM-holomorphic curve C through x not contained inΣv,

E′
v|C−{x} extends to C as sub-bundle.

Where Hs denote thes-dimensional Hausdorff measure. IfE′
v ∈ F(Ev, Jv), we will call

E′
v be aweaklyJv-holomorphic sub-bundleof Ev, andΣv be the singular set. On the other

hand, whenE′
v ∈ F(Ev, Jv), it is easy to see that the corresponding sectionπv : Ev → E′

v

of E∗
v ⊗ Ev is inL2

1(End(Ev)). So it is possible to define the degree ofE′
v as follows[9]:

deg(E′
v) := 1

Vol(M,η)

∫
M

(
√−1 TrπvΛF

1,1
Hv

− |∂̄E∗
v⊗Evπv|2)η[m], (4.3)

and the slope,µ(E′
v), is defined

µ(E′
v) = deg(E′

v)

rankE′
v

, (4.4)

whereHv is any Hermitian metric onEi. By Codazzi–Mainardi equations, ifE′
v is regular,

it is easy to check that this definition coincides with the one given in(4.1). In the following,
we take over some definitions from[2].

Definition 4.2. LetR = (E, J, φ) be aJ-holomorphic twisted quiver bundle,

(1) A morphismf : R→ R′ between two twisted quiver bundleR = (E, J, φ) andR′ =
(E′, J ′, φ′) with the same quiverQ is given by a collection of morphismsfv : Ev → E′

v,
for eachv ∈ Q0, such thatφ′

a ◦ (fta ⊗ IdẼa ) = f ′
ha ◦ φa, for each arrowa ∈ Q1.

(2) A weaklyJ-holomorphic quiver sub-bundle ofR is another twisted quiver bundleR′ =
(E′, φ′) such thatE′

v is a weaklyJv-holomorphic sub-bundle ofEv with singular set
Σv,andφa ◦ (fta ⊗ IdẼa ) = fha ◦ φ′

a onM \Σta ∪Σha for any a ∈ Q1, wherefv :
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E′
v → Ev are the inclusion morphisms. When∪vΣv = ∅, we callR′ be aJ-holomorphic

quiver sub-bundle ofR.
(3) A J-holomorphic quiver sub-bundleR′ ↪→ R is called proper if 0<

∑
v rankE′

v <∑
v rankEv.

(4) A J-holomorphic twisted quiver bundleR is called decomposable if it can be written as
a direct sumR = R1 ⊕ R2 of J-holomorphic quiver sub-bundle withR1 �= R,R2 �= R.
Otherwise,R is called indecomposable.

(5) A J-holomorphic twisted quiver bundleR is called simple if its onlyJ-holomorphic
endomorphisms are the multiplesλ IdR of the identity endomorphism.

Definition 4.3. Let σ andτ be collections of real numbersσv, τv, with σv positive, for each
v ∈ Q0. The (σ, τ)-degree and (σ, τ)-slope of quiver bundleRare

degσ,τ(R) =
∑
v

(σv deg(Ev) − τv rank(Ev)), µσ,τ(R) = degσ,τ(R)∑
v σv rank(Ev)

, (4.5)

respectively. We say that theJ-holomorphic twisted quiver bundleR is (σ, τ)-(semi) stable
if for all proper weaklyJ-holomorphic quiver bundleR′ of R, µσ,τ(R′) < (≤)µσ,τ(R). A
direct sum of (σ, τ)-stableJ-holomorphic twisted quiver bundles, all of them with the same
(σ, τ)-slope, is called (σ, τ)-polystable.

Suppose that the quiver bundleRadmits a Hermitian metric satisfying the quiver (σ, τ)-
vortex equations(2.7), then taking traces in(2.7), integrating over (M,η), and summing for
v ∈ Q0, one sees that the parametersσ, τ are constrained by the relation

degσ,τ(R) = 0. (4.6)

As that in[2], we known that the stability condition does not change under the following two
kinds of transformation of the parameters. (1) transform the parametersσ, τ, by multiplying
a global constantc > 0, obtainingσ′ = cσ, τ′ = cτ; (2) transform the parametersτ by
τ′v = τv + dσv for some real number d, and letσ′ = σ.

Next, we will show that the (σ, τ)-stability is the necessary condition for the existence of
solutions of the quiver (σ, τ)-vortex equations(2.7). In fact, we prove the following theorem.

Theorem 4.4. Let (M,JM, η) be a compact m-dimensional almost Hermitian manifold
whose K¨ahler form η satisfies∂M∂̄Mηm−1 = 0, and R = (E, J, φ) be a J-holomorphic
twisted quiver bundle over M. Letσ and τ are collections of real numbersσv, τv, with
σv positive, for eachv ∈ Q0; and satisfydegσ,τ(R) = 0.Suppose that the quiver bundle R
admits a Hermitian metricH satisfying the quiver(σ, τ)-vortexEqs.(2.7), then R must be
(σ, τ)-polystable.

Proof. This result is proved in exactly the same way as in[2, Section 3.2], so here we
only sketch the proof. We can assume thatR is indecomposable. Assume thatR′ = (E′, φ′)
be a proper weaklyJ-holomorphic quiver sub-bundle ofR. Let πv be theHv-orthogonal
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projection fromEv ontoE′
v section ofE∗

v ⊗ Ev, defined outside singular set. Letπ′
v =

IdEv − πv, we known thatπv andπ′
v are all inL2

1(End(Ev)). Then, one can show that

Vol(M,η) degσ,τ(R
′) = −

∑
v

∫
M

σv|∂̄Evπv|2H −
∑
a

∫
M

|φ⊥
a |2H, (4.7)

where φ⊥
a = πha ◦ φa ◦ (π′

ta ⊗ IdẼa ). The indecomposability ofR implies that either
∂̄Evπv �= 0 for somev or φ⊥

a �= 0 for somea, thus µσ,τ(R′) < 0, henceR is (σ, τ)-
stable. �

5. Proof of the main theorem

In this section we will use the (σ, τ)-stability to deduce the existence of a Hermitian
metric which satisfies the quiver (σ, τ)-vortex equations(2.7). Let K = {Kv}v∈Q0 be the
initial Hermitian metric on theJ-holomorphic twisted quiver bundleR, then we consider
the evolution equation(3.1), where the parametersσ andτ satisfy degσ,τ(R) = 0. First of
all, we will prove that the above equations have a long-time solutionH(t); next, under the
assumption of (σ, τ)-stability, we will show that the solutionH(t) converges to a Hermitian
metricH(∞) which we need.

From formula(3.2), we known that the evolution equations which we considered is
a nonlinear strictly parabolic system, so standard parabolic theory gives the short-time
existence.

Proposition 5.1. For sufficiently smallε > 0, the system(3.1) has a smooth solution
H(t) = {Hv(t)}v∈Q0 defined for0 ≤ t < ε.

LetH(t) be a solution of the evolution equations(3.1), andkv = K−1
v Hv, for all v ∈ Q0.

Then ∣∣∣∣ ∂∂t (lg Tr kv)

∣∣∣∣ =
∣∣∣∣∣Tr( ∂kv

∂t
)

Tr kv

∣∣∣∣∣ =
∣∣∣∣∣Tr(kvH−1

v
∂Hv
∂t

)

Tr kv

∣∣∣∣∣ = 2

σv
|θv(H)|Hv, (5.1)

and similarly∣∣∣∣ ∂∂t (lg Tr k−1
v )

∣∣∣∣ ≤ 2

σv
|θv(H)|Hv, (5.2)

whereθv(H) is defined in(3.1′).

Theorem 5.2. Suppose that a smooth solutionH(t) to the evolution equations(3.1) is de-
fined for0 ≤ t < T .ThenH(t)converges inC0-topology tosomecontinuousnon-degenerate
Hermitian metricH(T ) ast → T .
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Proof. Givenε > 0, by continuity att = 0 we can find aδ such that

sup
M

σ(H(t),H(t′)) < ε,

for 0< t, t′ < δ. ThenProposition 3.3and the Maximum principle imply that

sup
M

σ(H(t),H(t′)) < ε,

for all t, t′ > T − δ. This implies that theHv(t) are a uniformly Cauchy sequence and
converge to a continuous limiting metricHv(T ), for everyv ∈ Q0. By Proposition 3.1,
we known that|θv(H)|Hv are bounded uniformly. Using formulas(5.1) and (5.2), one can
conclude thatσ(Hv(t),Kv) are bounded uniformly, thereforeHv(T ) is a non-degenerate
Hermitian metric. �

Arguing like that in[10, Lemma 19]or [15, Lemma 4.3.2], one can easily prove the
following lemma.

Lemma 5.3. Let H(t), 0 ≤ t < T , be any one-parameter family of Hermitian metrics
on complex vector bundle E over almost Hermitian manifold M. If H(t) converges in the
C0 topology to some continuous metric H(T) as t → T , and if supM |ΛF1,1

H | is bounded
uniformly in t, then H(t) are bounded inC1,α (for 0< α < 1) and also bounded inLp2 (for
any1< p <∞) uniformly in t.

Theorem 5.4.Given any initial tupleK of Hermitian metrics, then the evolution equation
(3.1)has a unique solutionH(t) which exists for0 ≤ t <∞.

Proof. Proposition 5.1guarantees that a solution exists for a short time. Suppose that the
solutionH(t) exists for 0≤ t < T . By Theorem 5.2, H(t) converges inC0-topology to a
non-degenerate continuous limit Hermitian metricH(T ) ast → T . FromProposition 3.1,
we known that|θv(H)|Hv is bounded independently oft. On the other hand,H(t) are
uniformly bounded inC0-topology, so we known that supM |ΛF1,1

Hv
|2Kv is bounded

independently oft, for everyv ∈ Q0. Hence byLemma 5.3, Hv(t) are bounded in the
C1-topology and also bounded inLp2 (for any 1< p <∞) uniformly in t. Since the
evolution equation(3.2) is quadratic in the first derivative ofkv we can apply Hamilton’s
method[13] to deduce thatkv(t) → kv(T ) in C∞, equivalently,Hv(t) → Hv(T ), for every
v ∈ Q0, and the solution can be continued pastT. Then the evolution equation(3.1)has a
solutionH(t) define for all times. The uniqueness of solution can be easily deduced from
Proposition 3.3and the maximum principle.�

For the reader’s convenience, we first recall the definition of the Donaldson Lagrangian
over almost complex manifolds[9]. LetKv be a fixed Hermitian metric on the bundleEv,
denote

S(Ev,Kv) = {s ∈ Ω0(M,End(Ev))|s∗Kv = s},
L
p
2Sv = {s ∈ Lp2(End(Ev))|s∗Kv = s}, Metp2,v = {Kv esv |sv ∈ Lp2Sv}. (5.3)
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The Donaldson’s LagrangianMD : Metp2,v × Metp2,v → R is given by

MD(K,H) = 2
∫
M

〈log(K−1H),
√−1ΛF1,1

K 〉K

+ 2
∫
M

〈log(K−1H),
√−1Λ∂̄E(Ψ [log(K−1H)](∂K log(K−1H)))〉K,

whereΨ (x, y) = ey−x+(x−y)−1
(x−y)2 . The Donaldson Lagrangian is additive in the sense that[9],

MD(H1, H2) +MD(H2, H3) = MD(H1, H3).

The modified Donaldson LagrangianMφ,α of two Hermitian metrics on the quiver bundle
R is given by[2]

Mσ,τ(K ,H) =
∑
v

σvMD(Kv,Hv) +
∑
a

∫
M

(|φa|2H − |φa|2K)

−
∑
v

τv

∫
M

Tr(log(K−1
v Hv)), (5.4)

whereK = {Kv}, H = {Hv}, Kv,Hv ∈ Metp2,v. By direct calculation, one can show the
following lemma[2, Lemma 3.3].

Lemma 5.5.

(1) LetH1, H2, H3 be three Hermitian metrics on quiver bundle R, then

Mσ,τ(H1,H3) = Mσ,τ(H1,H2) +Mσ,τ(H2,H3). (5.5)

(2) LetH(t) be a family of Hermitian metrics on R, then

d

dt
Mσ,τ(H(0),H(t)) =

∑
v

∫
M

〈
H−1
v

dHv
dt
, θv(H(t))

〉
Hv(t)

. (5.6)

For the further argument, we need the following proposition.

Proposition 5.6 (de Bartolomeis and Tian[9, Theorem 0.2]). Let (M,JM, g), (N, JN, h)
be two almost Hermitian manifolds withdimRM = 2m, and assume there exists a bounded
closed2-form α on N such thatα1,1 > 0 uniformly. Letσ : M −→ N be aL2

1-weakly
(JM, JN )-holomorphic map. Then there exists a closed subsetΣ ⊂ M with H2m−4(Σ) <
+∞, such thatσ is smooth onM \Σ;moreover, for anyx ∈ Σ, any localJM-holomorphic
curve C through x not contained inΣ, σ|C−{x} extends smoothly to C.

Proof of themain theorem. LetH(t) = {(Hv(t)} be a solution of Eq.(3.1)with initial met-
ricK , andk(t) = {kv(t)}, wherekv = K−1

v Hv = exp(sv) for all v ∈ Q0. FromCorollary 3.6,
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we have

.̃ lg

{∑
v

σv(Tr(kv) + Tr(k−1
v ))

}
≥ −

∑
v

2

σv
(|θv(H)|Hv + |θv(K)|Kv ). (5.7)

By Proposition 3.1, we known that supM |θv(H(t))|Hv(t) is bounded independently oft.
UsingCorollary 3.9, there exists two constantsB5 andB6 such that∥∥∥∥∥lg

{∑
v

σv(Tr(kv) + Tr(k−1
v ))

}∥∥∥∥∥∞

≤ B5

(∫
M

lg

{∑
v

σv(Tr(kv) + Tr(k−1
v ))

}
+ B6

)
. (5.8)

On the other hand, one can check that

lg

{
1

2
∑
v rv

∑
v

(Tr kv + Tr k−1
v )

}

≤
∑
v

|sv|Kv =
∑
v

|sv|Hv ≤
(∑

v

r1/2v

)
lg
∑
v

(Tr kv + Tr k−1
v ), (5.9)

where rv = rankEv. So there exist constantsB7 > 0, B8 > 0 such that, for everyt ∈
[0,+∞), we have:

∑
v

‖sv(t)‖∞ ≤ B7 + B8

(∑
v

‖sv(t)‖1

)
. (5.10)

Now, there are two possibilities:

(1) There exists constantB9 > 0 such that, for everyt ∈ [0,+∞),

∑
v

‖sv(t)‖∞ < B9.

(2) lim supt→∞(
∑
v ‖sv(t)‖1) = +∞.

Assume we are in case (1). Using the condition∂M∂̄Mηm−1 = 0, it is not hard to check
that ∫

M

〈sv,
√−1Λ∂̄E(Ψ [sv](∂Hvsv))〉Hvη[m]

=
∫
M

〈Φ[sv](∂̄Evsv), ∂̄Evsv〉Hvη[m]−√−1
∫
M

Tr svH
−1
v Ψ [sv](∂Hvsv)

T
Hv ∧ ∂ηm−1

=
∫
M

〈Φ[sv](∂̄Evsv), ∂̄Evsv〉Hvη[m] − 1

2

√−1
∫
M

∂̄(Tr s2v) ∧ ∂ηm−1
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=
∫
M

〈Φ[sv](∂̄Evsv), ∂̄Evsv〉Hvη[m] .

where functionΦ(x, y) = Ψ (y, x). By formula(5.4), we have

Mσ,τ(K ,H) ≥ −
∑
v

∫
M

|sv||σv
√−1ΛF1,1

Hv
− τv IdEv |η[m]

+ 2
∑
v

∫
M

σv〈Φ[sv](∂̄Evsv), ∂̄Evsv〉Hvη[m] +
∑
a

∫
M

(|φa|2H − |φa|2K).

(5.11)

From
∑
v ‖sv(t)‖∞ < B9 for everyt ∈ [0,+∞), it follows thatΦ ≥ B10 > 0 on the range

of thesv(t)’s; so that∫
M

〈Φ[sv](∂̄Evsv), ∂̄Evsv〉Hvη[m] ≥ B10‖∂̄Evsv‖2
2, (5.12)

for everyv. On the other hand, the condition
∑
v ‖sv(t)‖∞ < B9 implies that

∑
v |φi|2H(t),

and
∑
v |σv

√−1ΛF1,1
Hv

− τv IdEv | are bounded uniformly. Therefore, there existsB11 > 0
such that, for everyt ∈ [0,+∞)

Mσ,τ(K ,H(t)) ≥ −B11. (5.13)

From(5.6), we have

d

dt
Mφ,τ(K ,H(t)) = −

∫
M

∑
v

2

σv
|θv(H)|2Hv. (5.14)

By (5.11), (5.12) and (5.14), we known that‖∂̄Evsv‖2 and also‖∂̄Evkv‖2 are uniformly
bounded for allv ∈ Q0. Thus, there exits a subsequencestj → +∞, such thatkv(tj)
weakly converges tokv(∞) in L2

1(Sv), for all v. By (5.13) and (5.14), we known that∑
v |θv(H)|2Hv (tj) weakly converges to 0 inL2(M). Then, the standard elliptic regularity

implies thatkv(∞) is smooth andHv(∞) = Kvkv(∞) satisfy the quiver (σ, τ)-vortex equa-
tions(2.7).

By conformal transformations, we can assume that the initial Hermitian metricK = {Kv}
satisfies:∑

v

Tr(θv(K)) = 0. (5.15)

For simplicity, we take over the following notation from[2]. Let E = ⊕vEv, then,K =
⊕vKv, andH = ⊕vHv are two Hermitian metrics on bundleE, k = ⊕vkv, ands = ⊕vsv ∈
S(E,K). The morphismsφa : Eta ⊗ Ẽa → Eha induce a sectionφ = ⊗aφa of the bundle
Υ = ⊕a Hom(Eta ⊗ Ẽa, Eha). H defines a Hermitian metric onΥ , which we shall also
denoteH, by (φ, φ′)H =∑a(φa, φ

′
a)Ha , whereφ andφ′ are two sections ofΥ . Given a vector

bundleΞ, we define the endomorphismsσ : Ξ ⊗ Sc → Ξ ⊗ Sc, whereSc = ⊕v End(Ev),
by fibrewise multiplication, i.e. (σ(f ⊗ s))v = f ⊗ σvsv. Given metricH and sectionsφ,
φ′ of bundleΥ , we define the endomorphismsφ ◦ φ′∗H , φ∗H ◦ φ′, [φ, φ′∗H ] ∈ Ω0(Sc) as
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follows:

(φ ◦ φ′∗H )v =
∑
a∈hv

φa ◦ φ′
a
∗H ; (φ∗H ◦ φ′)v =

∑
a∈t−1(v)

φ∗H
a ◦ φ′

a;

[φ, φ′∗H ] = φ ◦ φ′∗H − φ∗H ◦ φ′.

The quiver (σ, τ)-vortex equations(2.7)can now be written in a compact form.

σ ◦ √−1ΛF1,1
H + [φ, φ∗H ] = τ ◦ IdE. (5.16)

If H = K es ∈ Metp2, Ψ ′(x, y) = ex−y, then we have[2, Lemma 3.2]

|φ|2H =
∑
a

|φa|2Ha = 〈Ψ ′(sa)φa, φa〉Ka = 〈Ψ ′(s)φ, φ(s)〉K. (5.17)

Assume, from now on, we are in case (2). In particular, we can choose a sequence{tj}∞j=1

such that:tj → ∞ and
∑
v ‖sv(tj)‖1 → ∞. Let lj = ‖s(tj)‖1 anduj = l−1

j s(tj) ∈ S(E,K),
from the assumption, we known thatlj → ∞. Using(5.10), we have

‖uj‖1 = 1 and ‖uj‖∞ ≤ B12, (5.18)

whereB12 is a positive constant. From formula(3.5)and the above initial assumption(5.15),
we have

Tr s(t) = 0, (5.19)

for every 0≤ t <∞. From

lj〈Φ[ljuj](∂̄Euj), ∂̄Euj〉 ≥ 〈Φ[uj](∂̄Euj), ∂̄Euj〉, (5.20)

for j sufficiently large, and(5.11), (5.14), it follows that

∫
M

〈Φ[uj](∂̄Euj), ∂̄Euj〉η[m] ≤ B13.

Sinceuj is bounded uniformly, soΦ ≥ C > 0 on the range of theuj ’s. Then, we obtain

‖∂̄Euj‖2 ≤ B14, (5.21)

where∂̄E = ⊕v∂̄Ev . Then, passing to a subsequence,uj converges weakly tou∞ in L2
1;

clearly,u∞ is nontrivial.
If ζ, ζε ∈ C∞(R× R,R) satisfyζ(x, y) ≤ (x− y)−1, wheneverx > y, andζε(x, y) = 0

wheneverx− y ≤ ε, for some fixedε > 0, then similar to[2, Lemma 3.8], we have

(u∞, σ ◦ √−1ΛF1,1
K −τ ◦ IdE)L2+(σ ◦ ζ[u∞](∂̄Eu∞), ∂̄Eu∞)L2 + (ζε[u∞]φ, φ)L2

≤ lim
j→∞ l

−1
j

{∫
M

〈s(tj), σ
√−1ΛF1,1

K − τ IdE〉K+
∫
M

〈σΦ[s(tj)](∂̄Es(tj)), ∂̄Es(tj)〉

+
∫
M

(|φ|2H(tj) − |φ|2K)

}
≤ lim
j→∞ l

−1
j Mφ,τ(K ,H(tj)) = 0. (5.22)
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From the above inequality, one can prove the following two lemmas (the proof is similar to
[2, Lemmas 3.9 and 3.10], since the relaxation of the integrability condition on the almost
complex structure will change nothing in the proof).�

Lemma 5.7. The eigenvalues ofu∞ are constant almost everywhere. Let the eigenvalues
of u∞ beλ1, . . . , λl. If ζ ∈ C∞(R× R,R) satisfiesζ(λi, λj) = 0 wheneverλi > λj, then
ζ[u∞](∂̄Eu∞) = 0. If ζε satisfiesζε(x, y) = 0 wheneverx− y ≤ ε, for some fixedε > 0,
thenζε[u∞]φ = 0.

As above, letλ1, . . . , λl denote the distinct eigenvalues of theu∞, listed in ascending
order. On the other hand, by(5.19), we have Tru∞ = 0 almost everywhere. Sol ≥ 2, and
not all the eigenvalues ofu∞ are positive.

Forα < l definepα : R→ R to be a smooth positive function such that

pα(x) =
{

1 if x ≤ λα,
0 if x ≥ λα+1.

(5.23)

Define

π′
α = pα(u∞). (5.24)

Lemma 5.8. Letπ′
α be as above forα < l, πv : E → Ev be the canonical projections and

π′
α,v = π′

α ◦ πv. Then

(1) π′
α ∈ L2

1(S(E,K));

(2) π′
α

2 = π′
α = π′

α
∗K;

(3) (Id − π′
α)∂̄E∗⊗E(π′

α) = 0 almost everywhere;
(4) (Id − π′

α,ha) ◦ φa ◦ (π′
α,ta ⊗ IdẼa ) = 0 for eacha ∈ Q1.

From the above lemma, we known that theπ′
α’s areL2

1-weakly J-holomorphic sub-
bundles ofE and correspond toL2

1-weaklyJ-holomorphic maps from (M,JM, η) to some
Grassmann bundleGrp(E). If U ⊂ M is a sufficiently small domain, thenπ−1

Gr can be
equipped with a tamed Symplectic structure just by approximating the standard Kähler
structure onU ×Grp(Cr). ThereforeProposition 5.6implies thatπ′

α ∈ F(E, J). Soπ′
α,v rep-

resents a weaklyJv-holomorphic sub-bundleE′
α,v of (Ev, Jv). From (4) ofLemma 5.8, we

known that the inclusionsE′
α,v ↪→ Ev are compatible with the morphismsφa. So, we have

obtained a sequence of proper weaklyJ-holomorphic quiver sub-bundlesR′
α = (E′

α, φ
′
α) of

R = (E, J, φ);

R′
0 ↪→ R′

0 ↪→ · · ·R′
l = R. (5.25)

We define

Q(σ, τ) := Vol(M,η)(λl degσ,τ(R) −
l−1∑
α=1

(λα+1 − λα) degσ,τ(R
′
α)). (5.26)
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Then

Q(σ, τ) =
∫
M

√−1 Tr

{(
λl IdE −

l−1∑
α=1

(λα+1 − λα)π′
α

)
σ ◦ΛF1,1

K

}

+
∫
M

l−1∑
α=1

(λα+1 − λα)|∂̄E∗⊗Eπ′
α|2K

− Vol(M,η)
∑
v

τv

(
λl rankEv −

l−1∑
α=1

(λα+1 − λα) rankE′
αv

)

=
∫
M

〈u∞, σ ◦ √−1ΛF1,1
K − τ ◦ IdE〉K +

∫
M

l−1∑
α=1

(λα+1 − λα)|∂̄E∗⊗Eπ′
α|2K.

(5.27)

Using the result and notation of[7, Lemma 3.12.1],

l−1∑
α=1

(λα+1 − λα)|∂̄E∗⊗Eπ′
α|2

=
l−1∑
α=1

(λα+1 − λα)〈∂̄E∗⊗Eπ′
α, ∂̄E∗⊗Eπ′

α〉

=
l−1∑
α=1

(λα+1 − λα)〈(δpα)2[u∞]∂̄E∗⊗Eu∞, ∂̄E∗⊗Eu∞〉

= 〈ζ[u∞]∂̄E∗⊗Eu∞, ∂̄E∗⊗Eu∞〉. (5.28)

Hereζ : R× R→ R is defined byζ =∑l−1
α=0(λα+1 − λα)(δpα)2, hence it satisfies the con-

ditions thatζ(λ,µ) ≤ (λ− µ)−1 for λ > µ. Then, we make use of(5.22), (5.25) and (5.26)
to deduce that

Q(σ, τ) ≤ 0. (5.29)

On the other hand, from the definition of the (σ, τ)-stability of the quiver bundleRwe deduce
thatQ(σ, τ) > 0, thus we get a contradiction. So, we have proved the main theorem.
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